This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025230 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 3. 14
 3, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2. FORMULA G.f.: (1-sqrt(1-12*x+32*x^2))/2 - Michael Somos, Jun 08 2000. n*a(n) = (12*n-18)*a(n-1) - 32*(n-3)*a(n-2) - Richard Choulet, Dec 17 2009 a(n) ~ 2^(3*n-5/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2013 a(n) = 4^(n-2)*hypergeom([3/2, -n+2], [3], -1) for n>1. - Peter Luschny, Feb 03 2015 a(n+1) = GegenbauerC(n-1, -n, -3)/n for n>=1. - Peter Luschny, May 09 2016 MAPLE h := n -> simplify(4^n*hypergeom([3/2, -n], [3], -1)): a := n -> `if`(n=1, 3, h(n-2)): seq(a(n), n=1..21); # Peter Luschny, Feb 03 2015 MATHEMATICA Rest[CoefficientList[Series[(1-Sqrt[1-12x+32x^2])/2, {x, 0, 30}], x]]  (* Harvey P. Dale, Feb 22 2011 *) PROG (PARI) a(n)=polcoeff((1-sqrt(1-12*x+32*x^2+x*O(x^n)))/2, n) (PARI) {a(n)=if(n<2, 3*(n==1), n--; polcoeff( serreverse( x/(1+6*x+x^2) +x*O(x^n) ), n))} /* Michael Somos, Oct 14 2006 */ CROSSREFS Sequence in context: A283432 A157866 A221852 * A152456 A128605 A051511 Adjacent sequences:  A025227 A025228 A025229 * A025231 A025232 A025233 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 21:34 EDT 2018. Contains 312685 sequences. (Running on oeis4.)