login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025165 a(n) = H_n(1) / 2^floor(n/2) where H_n is the n-th Hermite polynomial. 1
1, 2, 1, -2, -5, -2, 23, 58, -103, -670, 257, 7214, 4387, -77794, -134825, 819466, 2841841, -7427774, -55739071, 22221790, 1081264139, 1718092478, -20988454441, -79774943398, 402959508745 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..800

Index entries for sequences related to Hermite polynomials

FORMULA

a(n) = A062267(n)/A016116(n). - R. J. Mathar, Feb 05 2013

Conjecture: a(n) +a(n-1) +(2*n-5)*a(n-2) +(2*n-7)*a(n-3) +(n-2)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Feb 25 2015

MAPLE

A025165 := proc(n)

    HermiteH(n, 1)/2^(floor(n/2)) ;

    simplify(%) ;

end proc: # R. J. Mathar, Feb 05 2013

MATHEMATICA

Table[ HermiteH[ n, 1 ]/2^Floor[ n/2 ], {n, 0, 24} ]

PROG

(PARI) for(n=0, 30, print1(polhermite(n, 1)/2^(floor(n/2)), ", ")) \\ G. C. Greubel, Jul 10 2018

(MAGMA) [((&+[(-1)^k*Factorial(n)*(2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]))/2^(Floor(n/2)): n in [0..30]]; // G. C. Greubel, Jul 10 2018

CROSSREFS

Sequence in context: A284553 A216913 A124218 * A212431 A318354 A106480

Adjacent sequences:  A025162 A025163 A025164 * A025166 A025167 A025168

KEYWORD

sign

AUTHOR

Wouter Meeussen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 05:50 EDT 2020. Contains 336290 sequences. (Running on oeis4.)