This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025135 (n-1)st elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n). 1
 1, 4, 22, 238, 5825, 345600, 51583084, 19765932032, 19661794008192, 51082239411000000, 347836712523276735000, 6221718604078720792473600, 292819054882445795002015111824, 36313083181879002042916296055971840, 11881691691176915544450299522846484375000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS From R. J. Mathar, Oct 01 2016: (Start) The k-th elementary symmetric functions of the terms binomial(n,j), j=0..n, form a triangle T(n,k), 0 <= k <= n, n >= 0:   1   1   2   1   4    5   1   8   22     24   1  16   93    238     256   1  32  386   2180    5825     6500   1  64 1586  19184  117561   345600   407700   1 128 6476 164864 2229206 15585920 51583084 64538880   ... This here is the first subdiagonal. The diagonal is A025134. The 2nd column is A000079, the 2nd A000346, the 3rd A025131, the 4th A025133. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..70 MATHEMATICA a[n_] := SymmetricPolynomial[n-1, Table[Binomial[n, k], {k, 0, n}]]; a /@ Range[18] (* Jean-François Alcover, Jul 12 2011 *) PROG (PARI) ESym(u)={my(v=vector(#u+1)); v[1]=1; for(i=1, #u, my(t=u[i]); forstep(j=i, 1, -1, v[j+1]+=v[j]*t)); v} a(n)={ESym(binomial(n))[n]} \\ Andrew Howroyd, Dec 19 2018 CROSSREFS Sequence in context: A260296 A302769 A137158 * A125801 A195227 A265908 Adjacent sequences:  A025132 A025133 A025134 * A025136 A025137 A025138 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 08:31 EDT 2019. Contains 322306 sequences. (Running on oeis4.)