login
A025098
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (Lucas numbers), t = (primes).
0
3, 5, 22, 32, 74, 100, 199, 239, 436, 530, 922, 1074, 1815, 2129, 3540, 4086, 6724, 7432, 12157, 13635, 22204, 24166, 39262, 42342, 68697, 75095, 121702, 133012, 215424, 231818, 375335, 396863, 642398, 687230, 1112246, 1173552, 1899149, 1999177
OFFSET
1,1
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} Lucas(k) * prime(n-k+2). - Wesley Ivan Hurt, Dec 29 2023
MATHEMATICA
Table[Sum[LucasL[k] Prime[n - k + 2], {k, Floor[(n + 1)/2]}], {n, 60}] (* Wesley Ivan Hurt, Dec 29 2023 *)
CROSSREFS
Sequence in context: A025093 A025112 A203192 * A025117 A318076 A124423
KEYWORD
nonn
STATUS
approved