login
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Lucas numbers).
0

%I #4 Mar 30 2012 18:56:00

%S 3,4,15,25,61,98,203,329,622,1006,1802,2916,5047,8166,13821,22363,

%T 37291,60338,99619,161187,264348,427724,698324,1129912,1839195,

%U 2975880,4834171,7821853

%N a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Lucas numbers).

%F G.f.:(-3+x^5-2*x^4-4*x^3-2*x^2-x)/((x^2+x-1)*(x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]

%K nonn

%O 2,1

%A _Clark Kimberling_