login
A024857
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (Fibonacci numbers).
2
1, 2, 7, 11, 27, 44, 91, 147, 278, 450, 806, 1304, 2257, 3652, 6181, 10001, 16677, 26984, 44551, 72085, 118220, 191284, 312300, 505312, 822513, 1330854, 2161907, 3498039, 5674751, 9181940
OFFSET
2,2
COMMENTS
Essentially the same as A023864 with different indexing.
FORMULA
G.f.:(-1-x^5-2*x^2-x)/((x^2+x-1)*(x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
MATHEMATICA
CoefficientList[Series[( (-1-x^5-2x^2-x)/((x^2+x-1)(x^4+x^2-1)^2) ), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 3, -2, -1, -1, -3, 2, 1, 1, 1}, {1, 2, 7, 11, 27, 44, 91, 147, 278, 450}, 30] (* Harvey P. Dale, Dec 26 2016 *)
CROSSREFS
Sequence in context: A024479 A295138 A023864 * A024481 A024591 A350711
KEYWORD
nonn
STATUS
approved