login
A024838
Least m such that if r and s in {1/3, 1/6, 1/9, ..., 1/3n} satisfy r < s, then r < k/m < (k+1)/m < s for some integer k.
5
10, 25, 46, 73, 121, 166, 235, 295, 385, 460, 571, 661, 793, 937, 1054, 1219, 1396, 1537, 1735, 1945, 2110, 2341, 2584, 2773, 3037, 3313, 3601, 3826, 4135, 4456, 4789, 5047, 5401, 5767, 6145, 6436, 6835, 7246, 7669, 7993, 8437, 8893, 9361, 9841, 10210, 10711, 11224
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
LINKS
MATHEMATICA
leastSeparatorS[seq_, s_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
t = Map[leastSeparatorS[1/(3*Range[50]), #] &, Range[5]];
t[[2]] (* A024838 *)
(* Peter J. C. Moses, Aug 06 2012 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved