login
A024827
Least m such that if r and s in {1/1, 1/4, 1/9,..., 1/n^2} satisfy r < s, then r < k/m < s for some integer k.
2
2, 5, 10, 19, 33, 76, 109, 148, 197, 325, 406, 501, 727, 865, 1015, 1373, 1576, 1801, 2313, 2602, 3250, 3611, 4001, 4852, 5325, 5820, 6913, 7501, 8789, 9478, 10207, 11775, 12616, 14416, 15377, 16385, 18514, 19653, 22051, 23329, 24643, 27437, 28900, 32001, 33621
OFFSET
2,1
COMMENTS
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012
LINKS
MATHEMATICA
leastSeparator[seq_] := Module[{n = 1},
Table[While[Or @@ (Ceiling[n #1[[1]]] <
2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length
[seq]}]];
t = Flatten[Table[1/h^2, {h, 1, 60}]]
leastSeparator[t]
CROSSREFS
Cf. A001000.
Sequence in context: A011893 A132210 A000098 * A304792 A104161 A288579
KEYWORD
nonn
STATUS
approved