login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024794 Number of 10's in all partitions of n. 13
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 43, 57, 79, 104, 140, 183, 242, 312, 407, 520, 670, 849, 1081, 1359, 1715, 2141, 2678, 3322, 4125, 5085, 6274, 7691, 9430, 11502, 14025, 17024, 20655, 24959, 30140, 36270, 43612, 52274, 62604, 74763 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

The sums of ten successive terms give A000070. - Omar E. Pol, Jul 12 2012

a(n) is also the difference between the sum of 10th largest and the sum of 11th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012

In general, if m>0 and a(n+m)-a(n) = A000041(n), then a(n) ~ exp(sqrt(2*n/3)*Pi) / (2*Pi*m*sqrt(2*n)) * (1 - Pi*(1/24 + m/2)/sqrt(6*n) + (1/48 + Pi^2/6912 + m/4 + m*Pi^2/288 + m^2*Pi^2/72)/n). - Vaclav Kotesovec, Nov 05 2016

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A181187(n,10) - A181187(n,11). - Omar E. Pol, Oct 25 2012

From Peter Bala, Dec 26 2013: (Start)

a(n+10) - a(n) = A000041(n). a(n) + a(n+5) = A024789(n).

a(n) + a(n+2) + a(n+4) + a(n+6) + a(n+8) = A024786(n).

O.g.f.: x^10/(1 - x^10) * product {k >= 1} 1/(1 - x^k) = x^10 + x^11 + 2*x^12 + 3*x^13 + ....

Asymptotic result: log(a(n)) ~ 2*sqrt(Pi^2/6)*sqrt(n) as n -> inf. (End)

a(n) ~ exp(Pi*sqrt(2*n/3)) / (20*Pi*sqrt(2*n)) * (1 - 121*Pi/(24*sqrt(6*n)) + (121/48 + 9841*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016

MAPLE

b:= proc(n, i) option remember; local g;

      if n=0 or i=1 then [1, 0]

    else g:= `if`(i>n, [0$2], b(n-i, i));

         b(n, i-1) +g +[0, `if`(i=10, g[1], 0)]

      fi

    end:

a:= n-> b(n, n)[2]:

seq(a(n), n=1..100);  # Alois P. Heinz, Oct 27 2012

MATHEMATICA

Table[ Count[ Flatten[ IntegerPartitions[n]], 10], {n, 1, 55} ]

b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 10, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-Fran├žois Alcover, Oct 09 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A066633, A000070(n-1), A024786, A024787, A024788, A024789, A024790, A024791, A024792, A024793, A000041.

Sequence in context: A218026 A241728 A326589 * A326292 A195308 A218025

Adjacent sequences:  A024791 A024792 A024793 * A024795 A024796 A024797

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)