login
A024791
Number of 7's in all partitions of n.
12
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 16, 23, 32, 45, 61, 84, 112, 151, 199, 263, 342, 446, 574, 739, 943, 1201, 1518, 1917, 2404, 3010, 3749, 4661, 5766, 7122, 8759, 10753, 13153, 16059, 19544, 23743, 28759, 34774, 41938, 50491, 60642, 72718, 87004, 103934, 123908
OFFSET
1,9
COMMENTS
The sums of seven successive terms give A000070. - Omar E. Pol, Jul 12 2012
a(n) is also the difference between the sum of 7th largest and the sum of 8th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
LINKS
David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
FORMULA
a(n) = A181187(n,7) - A181187(n,8). - Omar E. Pol, Oct 25 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (14*Pi*sqrt(2*n)) * (1 - 85*Pi/(24*sqrt(6*n)) + (85/48 + 4873*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016
G.f.: x^7/(1 - x^7) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 06 2017
MAPLE
b:= proc(n, i) option remember; local g;
if n=0 or i=1 then [1, 0]
else g:= `if`(i>n, [0$2], b(n-i, i));
b(n, i-1) +g +[0, `if`(i=7, g[1], 0)]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 27 2012
MATHEMATICA
<< DiscreteMath`Combinatorica`; Table[ Count[ Flatten[ Partitions[n]], 7], {n, 1, 52} ]
Table[Count[Flatten[IntegerPartitions[n]], 7], {n, 55}] (* Harvey P. Dale, Feb 26 2015 *)
b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 7, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0, 0, 0], Vec(x^7/(1 - x^7) * prod(k=1, 50, 1/(1 - x^k)))) \\ Indranil Ghosh, Apr 06 2017
KEYWORD
nonn
STATUS
approved