This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024789 Number of 5's in all partitions of n. 13
 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 50, 68, 94, 126, 170, 226, 299, 391, 511, 660, 853, 1091, 1393, 1766, 2235, 2811, 3527, 4403, 5484, 6800, 8415, 10369, 12752, 15627, 19110, 23298, 28346, 34389, 41642, 50295, 60636, 72929, 87563, 104903, 125470 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS The sums of five successive terms give A000070. - Omar E. Pol, Jul 12 2012 a(n) is also the difference between the sum of 5th largest and the sum of 6th largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA a(n) = A181187(n,5) - A181187(n,6). - Omar E. Pol, Oct 25 2012 a(n) ~ exp(Pi*sqrt(2*n/3)) / (10*Pi*sqrt(2*n)) * (1 - 61*Pi/(24*sqrt(6*n)) + (61/48 + 2521*Pi^2/6912)/n). - Vaclav Kotesovec, Nov 05 2016 G.f.: x^5/(1 - x^5) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 06 2017 EXAMPLE From Omar E. Pol, Oct 25 2012: (Start) For n = 8 we have: -------------------------------------- .                             Number Partitions of 8               of 5's -------------------------------------- 8 .............................. 0 4 + 4 .......................... 0 5 + 3 .......................... 1 6 + 2 .......................... 0 3 + 3 + 2 ...................... 0 4 + 2 + 2 ...................... 0 2 + 2 + 2 + 2 .................. 0 7 + 1 .......................... 0 4 + 3 + 1 ...................... 0 5 + 2 + 1 ...................... 1 3 + 2 + 2 + 1 .................. 0 6 + 1 + 1 ...................... 0 3 + 3 + 1 + 1 .................. 0 4 + 2 + 1 + 1 .................. 0 2 + 2 + 2 + 1 + 1 .............. 0 5 + 1 + 1 + 1 .................. 1 3 + 2 + 1 + 1 + 1 .............. 0 4 + 1 + 1 + 1 + 1 .............. 0 2 + 2 + 1 + 1 + 1 + 1 .......... 0 3 + 1 + 1 + 1 + 1 + 1 .......... 0 2 + 1 + 1 + 1 + 1 + 1 + 1 ...... 0 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 .. 0 ------------------------------------ .               7 - 4 =          3 The difference between the sum of the fifth column and the sum of the sixth column of the set of partitions of 8 is 7 - 4 = 3 and equals the number of 5's in all partitions of 8, so a(8) = 3. (End) MAPLE b:= proc(n, i) option remember; local g;       if n=0 or i=1 then [1, 0]     else g:= `if`(i>n, [0\$2], b(n-i, i));          b(n, i-1) +g +[0, `if`(i=5, g[1], 0)]       fi     end: a:= n-> b(n, n)[2]: seq(a(n), n=1..100);  # Alois P. Heinz, Oct 27 2012 MATHEMATICA Table[ Count[ Flatten[ IntegerPartitions[n]], 5], {n, 1, 50} ] (* second program: *) b[n_, i_] := b[n, i] = Module[{g}, If[n == 0 || i == 1, {1, 0}, g = If[i > n, {0, 0}, b[n - i, i]]; b[n, i - 1] + g + {0, If[i == 5, g[[1]], 0]}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *) PROG (PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec(x^5/(1 - x^5) * prod(k=1, 50, 1/(1 - x^k)))) \\ Indranil Ghosh, Apr 06 2017 CROSSREFS Cf. A066633, A024786, A024787, A024788, A024790, A024791, A024792, A024793, A024794. Sequence in context: A241553 A241549 A266773 * A318028 A200661 A175539 Adjacent sequences:  A024786 A024787 A024788 * A024790 A024791 A024792 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 00:52 EDT 2019. Contains 328315 sequences. (Running on oeis4.)