login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 3rd elementary symmetric function of {1, p(1), p(2), ..., p(n-1)}, where p(0) = 1.
2

%I #5 Sep 23 2016 07:01:36

%S 6,61,348,1646,5754,17535,44268,102412,227750,452531,869928,1576686,

%T 2666994,4341745,6932756,10845872,16266454,24022575,34629762,48484870,

%U 67169634,91475603,123389134,165725172,219251334,284875003,365853566

%N a(n) = 3rd elementary symmetric function of {1, p(1), p(2), ..., p(n-1)}, where p(0) = 1.

%p SymmPolyn := proc(L::list,n::integer)

%p local c,a,sel;

%p a :=0 ;

%p sel := combinat[choose](nops(L),n) ;

%p for c in sel do

%p a := a+mul(L[e],e=c) ;

%p end do:

%p a;

%p end proc:

%p A024523 := proc(n)

%p [1,seq(ithprime(k),k=1..n-1)] ;

%p SymmPolyn(%,3) ;

%p end proc: # _R. J. Mathar_, Sep 23 2016

%K nonn

%O 3,1

%A _Clark Kimberling_