login
A024476
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Lucas numbers), t = A023533.
1
1, 0, 0, 1, 3, 4, 7, 0, 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2208, 3574, 5782, 9356, 15138, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39604, 64082, 103686, 167768
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{k=1..floor((n+1)/2)} A000032(k) * A023533(n-k+1).
MATHEMATICA
A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]]+2, 3]!= n, 0, 1];
A024476[n_]:= A024476[n]= Sum[LucasL[j]*A023533[n-j+1], {j, Floor[(n+1)/2]}];
Table[A024476[n], {n, 100}] (* G. C. Greubel, Aug 01 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Lucas(k)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Aug 01 2022
(SageMath)
@CachedFunction
def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
def A024476(n): return sum(lucas_number2(j, 1, -1)*A023533(n-j+1) for j in (1..((n+1)//2)))
[A024476(n) for n in (1..100)] # G. C. Greubel, Aug 01 2022
CROSSREFS
Sequence in context: A233512 A339675 A095877 * A372366 A173014 A322017
KEYWORD
nonn
STATUS
approved