login
a(n) = [ (3rd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+2 primes}.
1

%I #7 May 01 2019 15:31:54

%S 3,14,48,124,279,543,981,1710,2758,4329,6519,9365,13088,18023,24448,

%T 32237,42031,53897,67765,84548,104253,127677,155845,188299,224778,

%U 266201,312202,363845,426136,495751,574268,660165,758682,865898,984968,1116797

%N a(n) = [ (3rd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+2 primes}.

%H Robert Israel, <a href="/A024453/b024453.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor(A024448(n)/A007504(n+2)). - _Robert Israel_, May 01 2019

%p N:= 100: # to get the first N terms

%p P:= [seq(ithprime(i),i=1..N+2)]:

%p E1:= ListTools:-PartialSums(P):

%p E2:= ListTools:-PartialSums([0,seq(P[i]*E1[i-1],i=2..N+2)]):

%p E3:= ListTools:-PartialSums([0,seq(P[i]*E2[i-1],i=2..N+2)]):

%p seq(floor(E3[n]/E1[n]),n=3..N+2); # _Robert Israel_, May 01 2019

%Y Cf. A007504, A024448.

%K nonn

%O 1,1

%A _Clark Kimberling_