This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024431 A generalized difference set on the set of all integers (lambda = 1). 7
 1, 2, 6, 8, 18, 21, 44, 52, 106, 115, 232, 243, 488, 502, 1006, 1024, 2050, 2071, 4144, 4166, 8334, 8358, 16718, 16743, 33488, 33515, 67032, 67060, 134122, 134151, 268304, 268334, 536670, 536702, 1073406, 1073439, 2146880, 2146915, 4293832 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In the set of all positive differences of the sequence each integer appears exactly once, i.e., lambda = 1. REFERENCES T. Baginova, R. Jajcay, Notes on subtractive properties of natural numbers, Bulletin of the ICA, Vol. 25(1999), pp. 29-40 O. Grosek, R. Jajcay, Generalized Difference Sets on an Infinite Cyclic Semigroup, JCMCC, Vol. 13 (1993), pp. 167-174. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 FORMULA Let N_1={1, 2}. Given N_i, let N_{i+1} = N_i union {2k+2, 2k+2+j} where k = max element of N_i and j = smallest number not of form x-y for x, y in N_i, x>y. Union of all N_i gives sequence. a(A115406(n)) - a(A115407(n)) = n; a(m) - a(n) = A115409(m*(m-1)/2+n+1), 1 <= n < m. - Reinhard Zumkeller, Jan 22 2006 For n > 0: a(n) = A115409(n,1) + 1. - Reinhard Zumkeller, Sep 16 2014 MAPLE M:= 100: # to get all differences up to M Agenda:= Array(1..M, 1): a[1]:= 1: a[2]:= 2: Agenda[1]:= 0: for n from 2 by 2 do   dm:= ArrayTools:-SearchArray(Agenda, 1);   if ArrayTools:-Size(dm)[1]=0  then break fi;   dm:= dm[1];   Agenda[dm]:= 0:   a[n+1]:= 2*a[n]+2:   a[n+2]:= a[n+1] + dm;   for j from n by -1 to 1 while a[n+1] - a[j] <= M do     Agenda[a[n+1]-a[j]]:= 0;     if a[n+2]-a[j] <= M then Agenda[a[n+2]-a[j]]:= 0 fi   od: od: seq(a[i], i=1..n); # Robert Israel, Oct 08 2015 MATHEMATICA differenceQ[seq_, x_] := (r = False; Do[ If[ x == seq[[k]] - seq[[j]], r = True; Break[]], { j, 1, Length[seq] }, {k, 1, Length[seq] } ]; r); seq[1] = {1, 2}; seq[i_] := seq[i] = (k = Max[ seq[i-1] ]; j = First[ Select[ Range[k], !differenceQ[ seq[i-1], #] & , 1]]; Union[ seq[i-1], {2k+2, 2k+2+j} ] ); A024431 = seq[20] (* Jean-François Alcover, Jan 04 2012 *) PROG (Haskell) import Data.List ((\\)) a024431 n = a024431_list !! n a024431_list = 1 : 2 : f [2, 1] [2 ..] where    f ks@(k:_) (j:js) =      x : y : f (y : x : ks) ((js \\ map (y -) ks) \\ map (x -) ks)      where y = x + j; x = 2 * k + 2 -- Reinhard Zumkeller, Sep 16 2014 CROSSREFS Cf. A005282, A049399, A115408, A115409. Cf. A247414 (first differences). Sequence in context: A005823 A259026 A178758 * A152598 A154610 A053658 Adjacent sequences:  A024428 A024429 A024430 * A024432 A024433 A024434 KEYWORD nonn,nice,easy AUTHOR Otokar Grosek (grosek(AT)elf.stuba.sk) EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), May 04 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.