%I #15 Jan 10 2024 04:58:12
%S 1,2,3,6,12,26,62,161,448,1338,4274,14524,52289,198678,794065,3328482,
%T 14594217,66779091,318205958,1575994324,8098891289,43115440260,
%U 237435483669,1350777074576,7928871324300,47965914249016,298735745451523
%N a(n) = floor(Sum_{m=1..n} Stirling2(n,m) / binomial(n-1,m-1)).
%o (SageMath)
%o print([int(sum(stirling_number2(n, m)/binomial(n-1, m-1) for m in [1..n])) for n in [1..27]]) # _Andrey Zabolotskiy_, Jan 09 2024
%Y Cf. A024423, A024424, A024425.
%K nonn
%O 1,2
%A _Clark Kimberling_