login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024419 a(n) = n! (1/C(n,0) + 1/C(n,1) + ... + 1/C(n,[ n/2 ])). 3
1, 1, 3, 8, 34, 156, 924, 6144, 48096, 420480, 4134240, 44720640, 530444160, 6824805120, 94787884800, 1412038656000, 22464536371200, 380017225728000, 6811416338227200, 128936055177216000, 2570286167543808000, 53818546503794688000, 1180914445357903872000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Half-convolution of factorials (A000142) with itself. For the definition of the half-convolution of a sequence with itself see a comment to A201204. - Vladimir Reshetnikov, Oct 05 2016

LINKS

Robert Israel, Table of n, a(n) for n = 0..449

FORMULA

G.f.: (G(x)^2+H(x))/2 where G(x) = Sum_{k>=0} k!*x^k and H(x) = Sum_{k>=0} k!^2*x^(2*k). - Vladeta Jovovic, Sep 22 2007

a(n) = Sum_{k=0..floor(n/2)} k!*(n-k)!. - Vladimir Reshetnikov, Oct 05 2016

EXAMPLE

a(3)=3!*(1/1 + 1/3)=6*4/3=8.

MAPLE

a:=proc(n) options operator, arrow: factorial(n)*(sum(1/binomial(n, k), k= 0.. floor((1/2)*n))) end proc: seq(a(n), n=0..21); # Emeric Deutsch, Oct 11 2007

MATHEMATICA

Table[Sum[k! (n - k)!, {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 05 2016 *)

PROG

(PARI) a(n) = sum(k=0, n\2, k!*(n-k)!); \\ Michel Marcus, Oct 05 2016

CROSSREFS

Cf. A000142, A003149, A201204.

Sequence in context: A322303 A117722 A231856 * A303870 A186517 A094448

Adjacent sequences:  A024416 A024417 A024418 * A024420 A024421 A024422

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Emeric Deutsch, Oct 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 06:24 EDT 2019. Contains 323599 sequences. (Running on oeis4.)