%I #38 Jan 05 2025 19:51:35
%S 1716,2652,3876,3960,4290,5244,5700,5720,6900,6930,8004,8700,9300,
%T 9690,10010,10788,11088,12180,12876,12920,13020,13764,14280,15252,
%U 15470,15540,15960,16380,17220,17480,18018,18060,18088,18204,19092,19320,20592,20868
%N Perimeters of more than one primitive Pythagorean triangle.
%C a(23) = 14280 is the first perimeter of 3 primitive Pythagorean triangles: {119, 7080, 7081}, {168, 7055, 7057} and {3255, 5032, 5993}. - _Jean-François Alcover_, Mar 14 2012
%H David A. Corneth, <a href="/A024408/b024408.txt">Table of n, a(n) for n = 1..10000</a>
%H Leon Bernstein, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-3/ bernstein.pdf">Primitive Pythagorean Triples</a>, The Fibonacci Quarterly 20.3 (1982) 227-241.
%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>
%H Lindsay Witcosky, <a href="https://www.whitman.edu/Documents/Academics/Mathematics/SeniorProject_LindseyWitcosky.pdf">Perimeters of primitive Pythagorean triangles</a>
%e a(1) = 1716 with precisely two primitive Pythagorean triangles (with increasing entries): {195, 748, 773} and {364, 627, 725}. From Ron Knott's link. This is the first example of the family of perimeters 12*b(k)*(b(k) + 2) with b(k) = A007528(k), for k >= 2. See the Bernstein link, p. 234, Theorem 5. a). - _Wolfdieter Lang_, Sep 24 2019
%Y Cf. A007528, A024364, A103606.
%K nonn
%O 1,1
%A _David W. Wilson_