login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

[ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.
0

%I #21 Jul 07 2019 02:49:16

%S 3,20,63,150,304,552,926,1460,2197,3180,4460,6090,8128,10639,13689,

%T 17350,21699,26817,32790,39706,47662,56755,67090,78774,91919,106644,

%U 123069,141320,161528,183828,208360,235266,264697,296804,331746,369683,410784

%N [ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.

%F a(n) = floor(A024393(n) / A024391(n + 2)). - _Sean A. Irvine_, Jul 07 2019

%t S[n_] := 3 Range[0, n + 2] + 2; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[2, S@ n]], {n, 37}] (* _Michael De Vlieger_, Dec 10 2015 *)

%Y Cf. A024391, A024393.

%K nonn

%O 1,1

%A _Clark Kimberling_