login
A024402
[ (4th elementary symmetric function of S(n))/(2nd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 2 mod 3}.
0
3, 20, 63, 150, 304, 552, 926, 1460, 2197, 3180, 4460, 6090, 8128, 10639, 13689, 17350, 21699, 26817, 32790, 39706, 47662, 56755, 67090, 78774, 91919, 106644, 123069, 141320, 161528, 183828, 208360, 235266, 264697, 296804, 331746, 369683, 410784
OFFSET
1,1
FORMULA
a(n) = floor(A024393(n) / A024391(n + 2)). - Sean A. Irvine, Jul 07 2019
MATHEMATICA
S[n_] := 3 Range[0, n + 2] + 2; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[2, S@ n]], {n, 37}] (* Michael De Vlieger, Dec 10 2015 *)
CROSSREFS
Sequence in context: A062359 A342672 A099721 * A345689 A292072 A183377
KEYWORD
nonn
STATUS
approved