login
A024390
[ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 positive integers congruent to 1 mod 4}.
0
0, 2, 5, 10, 15, 21, 28, 37, 46, 56, 67, 80, 93, 107, 122, 138, 156, 174, 193, 213, 235, 257, 280, 304, 330, 356, 383, 411, 441, 471, 502, 534, 568, 602, 637, 673, 711, 749, 788, 828, 870, 912, 955, 999, 1045, 1091, 1138, 1186, 1236, 1286, 1337
OFFSET
1,2
FORMULA
Empirical g.f.: x^2*(x^16-2*x^15+x^14+x^4-2*x^2-x-2) / ((x-1)^3*(x+1)*(x^2+1)). - Colin Barker, Aug 16 2014
a(n) = floor(A024380(n) / A024379(n+1)). - Sean A. Irvine, Jul 06 2019
CROSSREFS
Sequence in context: A135042 A109666 A215098 * A125622 A080551 A179207
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jul 06 2019
STATUS
approved