%I
%S 0,3,9,16,25,36,49,64,82,101,122,145,170,197,227,258,291,326,363,402,
%T 444,487,532,579,628,679,733,788,845,904,965,1028,1094,1161,1230,1301,
%U 1374,1449,1527,1606,1687,1770,1855,1942
%N a(n) = [ (2nd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+1 positive integers congruent to 1 mod 4}.
%F Conjecture: a(n) = 2*a(n1)  a(n2) + a(n6)  2*a(n7) + a(n8). G.f. x^2*(33*xx^22*x^32*x^42*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x^2x+1)*(x1)^3 ).  _R. J. Mathar_, Oct 08 2011
%F a(n) = floor(A024378(n) / A000384(n+1)).  _Sean A. Irvine_, Jul 06 2019
%K nonn
%O 1,2
%A _Clark Kimberling_
