This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024382 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4. 3
 1, 6, 59, 812, 14389, 312114, 8011695, 237560280, 7990901865, 300659985630, 12511934225955, 570616907588100, 28301322505722525, 1516683700464669450, 87336792132539066775, 5378036128829898836400, 352652348707389385916625, 24533212082483855129037750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is equal to the determinant of the n X n matrix whose (i,j)-entry is KroneckerDelta[i,j]((4*i+2)-1)+1. - John M. Campbell, May 23 2011 From R. J. Mathar, Oct 01 2016: (Start) The k-th elementary symmetric functions of the integers 1+4*j, j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0: 1 1 1 1 6 5 1 15 59 45 1 28 254 812 585 1 45 730 5130 14389 9945 1 66 1675 20460 122119 312114 208845 1 91 3325 62335 633619 3365089 8011695 5221125 1 120 5964 158760 2441334 21740040 105599276 237560280 151412625 This here is the first subdiagonal. The diagonal seems to be A007696. The 2nd column is A000384, the 3rd A024378, the 4th A024379. (End) LINKS Alois P. Heinz, Table of n, a(n) for n = 0..350 FORMULA a(n) = (8*n-2)*a(n-1) - (4*n-3)^2*a(n-2) for n>1. - Alois P. Heinz, Feb 25 2015 E.g.f.: (4-log(1-4*x))/(4*(1-4*x)^(5/4)). - Gheorghe Coserea, Dec 24 2015 EXAMPLE For n = 1 we have a(1) = 1*5*(1/1 + 1/5) = 6. For n = 2 we have a(2) = 1*5*9*(1/1 + 1/5 + 1/9) = 59. For n = 3 we have a(3) = 1*5*9*13*(1/1 + 1/5 + 1/9 + 1/13) = 812. - Gheorghe Coserea, Dec 24 2015 MAPLE a:= proc(n) option remember; `if`(n<3, [1, 6, 59][n+1],       (8*n-2)*a(n-1) -(4*n-3)^2*a(n-2))     end; seq(a(n), n=0..20);  # Alois P. Heinz, Feb 25 2015 MATHEMATICA Table[Det[Array[KroneckerDelta[#1, #2]((4*#1+2)-1)+1&, {k, k}]], {k, 1, 10}] (* John M. Campbell, May 23 2011 *) RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == (8 n - 2) a[n - 1] - (4 n - 3)^2 a[n - 2]}, a, {n, 0, 20}] (* Vincenzo Librandi, Dec 26 2015 *) PROG (PARI) x = 'x + O('x^33); Vec(serlaplace((4-log(1-4*x))/(4*(1-4*x)^(5/4)))) \\ Gheorghe Coserea, Dec 24 2015 (MAGMA) I:=[1, 6]; [n le 2 select I[n] else (8*n-10)*Self(n-1)-(4*n-7)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 26 2015 CROSSREFS Cf. A024216. Sequence in context: A296169 A089153 A075136 * A053987 A024270 A024271 Adjacent sequences:  A024379 A024380 A024381 * A024383 A024384 A024385 KEYWORD nonn AUTHOR EXTENSIONS More terms from Alois P. Heinz, Feb 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)