%I #25 Nov 04 2018 14:46:20
%S 5,17,29,47,59,71,89,101,113
%N Primes forming a 3 X 3 magic square with prime entries and minimal constant 177 = A164843(3).
%C The minimal 3 X 3 magic square made of consecutive primes has constant 4440084513 = A073520(3) = A270305(1), cf. A073519. - _M. F. Hasler_, Oct 22 2018
%C Sequence A073473 gives a variant using "primes including 1" (for historical reasons), to which also refers A073502. - _M. F. Hasler_, Oct 24 2018
%H Harvey Heinz, <a href="http://www.magic-squares.net/primesqr.htm">Prime Magic Squares</a>
%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>
%e The square is [101 5 71 ; 29 59 89 ; 47 113 17].
%e The lexicographically smallest equivalent variant (modulo reflections on the symmetry axes of the square) is [17 89 71 ; 113 59 5 ; 47 29 101], cf. A320872. - _M. F. Hasler_, Oct 24 2018
%o (PARI) A024351=select(p->setsearch(P,118-p),P=primes(30)[^5]) \\ 118 = 2*59, where 59 is the central prime; primes(30) = primes < 118. For the magic square itself, use A320872_row(1). - _M. F. Hasler_, Oct 25 2018
%Y Cf. A073350, A073520, A270305, A164843.
%Y Cf. A073473, A073502.
%Y Cf. A320872 (3 X 3 magic squares of primes), A268790 (magic sums of these).
%K fini,full,nonn
%O 1,1
%A Karl Schmerbauch (karl.j.schmerbauch(AT)boeing.com)
%E Offset corrected by _Arkadiusz Wesolowski_, Nov 26 2011