This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024283 E.g.f. 1/2 * tan(x)^2 (even powers only). (Formerly N1950) 8
 0, 1, 8, 136, 3968, 176896, 11184128, 951878656, 104932671488, 14544442556416, 2475749026562048, 507711943253426176, 123460740095103991808, 35125800801971979943936, 11559592093904798920736768, 4356981378562584648085405696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of cyclically reverse alternating permutations of length 2n+1, cf. A024255. - Vladeta Jovovic, May 20 2007 Related to A102573: letting T(q,r) be the coefficient of n^r in the polynomial 2^(q-n)/n times sum(k=0..n binomial(n, k)*k^q), then A024283(x) = sum(k=0..(2*x-1) T(2*x,k)*(-1)^(k+x)*2^k). See Mathematica code below. [John M. Campbell, Sep 15 2013] REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, T(n,2). N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 Beáta Bényi, Miguel Méndez, José L. Ramírez, Tanay Wakhare, Restricted r-Stirling Numbers and their Combinatorial Applications, arXiv:1811.12897 [math.CO], 2018. FORMULA G.f.: (1/2)*(tan(z))^2 = (z^2/(1-z^2)/2)*( 1 +2*z^2/( (z^2-1)*(G(0)-2*z^2)), G(k) = (k+2)*(2*k+3)-2*z^2+2*z^2*(k+2)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011 O.g.f.: Sum_{n>=1} x^n * Product_{k=1..n} (2*k-1)^2 / (1 + (2*k-1)^2*x). - Paul D. Hanna, Feb 01 2013 G.f.: x/(Q(0)-x), where Q(k) = 1 + 2*x*(2*k+1)^2 - x*(2*k+3)^2*(1+x*(2*k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013 a(n) ~ (2*n)! * n * 2^(2*n+3) / Pi^(2*n+2). - Vaclav Kotesovec, Aug 22 2014 EXAMPLE (tan x)^2 = x^2 + 2/3*x^4 + 17/45*x^6 + 62/315*x^8 + ... G.f. = x + 8*x^2 + 136*x^3 + 3968*x^4 + 176896*x^5 + 11184128*x^6 + ... MAPLE A024283 := n -> `if`(n=0, 0, (-1)^(n-1)*2^(2*n+1)*polylog(-2*n-1, -1)); # Peter Luschny, Jun 28 2012 MATHEMATICA f[n_] := -(-1)^n 2^(2 n + 1) PolyLog[-1 - 2 n, -1]; f[0] = 0; Array[f, 15, 0] (* Robert G. Wilson v, Jun 28 2012 *) poly[q_] := 2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] := First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Print[Table[Sum[T[2*x, k]*(-1)^(k+ x)*(2^k), {k, 0, 2*x-1}], {x, 1, 10}]]; (* John M. Campbell, Sep 15 2013 *) a[ n_] := If[ n < 1, 0, -2 (-4)^n PolyLog[ -1 - 2 n, -1]] (* Michael Somos, Jan 21 2014 *) a[ n_] := If[ n < 1, 0, With[ {k = 2 n + 1}, k! SeriesCoefficient[ Tan[x] / 2, {x, 0, k}]]] (* Michael Somos, Jan 21 2014 *) a[ n_] := If[ n < 0, 0, With[ {k = 2 n}, k! SeriesCoefficient[ Tan[x]^2 / 2, {x, 0, k}]]] (* Michael Somos, Jan 21 2014 *) a[0] = 0; a[n_] := (4^(n+1)-1)*Gamma[2*(n+1)]*Zeta[2*(n+1)]/Pi^(2*(n+1)); Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 05 2016 *) PROG (PARI) {a(n)=polcoeff( sum(m=1, n, x^m*prod(k=1, m, (2*k-1)^2/(1+(2*k-1)^2*x +x*O(x^n))) ), n)} \\ Paul D. Hanna, Feb 01 2013 CROSSREFS Cf. A009764, A024255. Cf. A009764, A000182, A102573. A diagonal of A059419. Sequence in context: A036915 A238465 A049211 * A134053 A136472 A145404 Adjacent sequences:  A024280 A024281 A024282 * A024284 A024285 A024286 KEYWORD nonn,easy AUTHOR N. J. A. Sloane. This sequence was in the 1973 "Handbook", but was then omitted from the database. Resubmitted by R. H. Hardin. Entry revised by N. J. A. Sloane, Jun 12 2012 EXTENSIONS Extended and signs tested Mar 15 1997. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:15 EDT 2019. Contains 328267 sequences. (Running on oeis4.)