login
A024215
Sum of squares of first n positive integers congruent to 1 mod 3.
7
1, 17, 66, 166, 335, 591, 952, 1436, 2061, 2845, 3806, 4962, 6331, 7931, 9780, 11896, 14297, 17001, 20026, 23390, 27111, 31207, 35696, 40596, 45925, 51701, 57942, 64666, 71891, 79635, 87916, 96752, 106161, 116161, 126770, 138006, 149887, 162431, 175656, 189580
OFFSET
1,2
FORMULA
a(n) = n*(6*n^2 - 3*n - 1)/2.
G.f.: x*(1 + 13*x + 4*x^2) / (x-1)^4. - R. J. Mathar, Oct 08 2011
2*a(n) = A213826(n). - Clark Kimberling, Jul 04 2012
E.g.f.: (1/2)*(2*x + 15*x^2 + 6*x^3)*exp(x). - Franck Maminirina Ramaharo, Nov 23 2018
MATHEMATICA
a[n_] := n*(6*n^2 - 3*n - 1)/2; Array[a, 50] (* Amiram Eldar, Nov 23 2018 *)
Accumulate[Range[1, 202, 3]^2] (* Harvey P. Dale, Aug 24 2019 *)
PROG
(Magma) [n*(6*n^2-3*n-1)/2: n in [1..40]]; // Vincenzo Librandi, Oct 10 2011
(PARI) a(n)=n*(6*n^2-3*n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [n*(6*n^2-3*n-1)/2 for n in (1..40)] # G. C. Greubel, Nov 23 2018
CROSSREFS
Cf. A016777 (positive integers congruent to 1 mod 3).
Sequence in context: A065011 A031432 A157474 * A095071 A095072 A180529
KEYWORD
nonn,easy
STATUS
approved