login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024206 Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2). 44
0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 63, 71, 80, 89, 99, 109, 120, 131, 143, 155, 168, 181, 195, 209, 224, 239, 255, 271, 288, 305, 323, 341, 360, 379, 399, 419, 440, 461, 483, 505, 528, 551, 575, 599, 624, 649, 675, 701, 728, 755, 783, 811, 840 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n+1) is the number of 2 X n binary matrices with no zero rows or columns, up to row and column permutation.

[ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 odd positive integers}.

First differences are 1, 2, 2, 3, 3, 4, 4, 5, 5, ... .

Let M_n denotes the n X n matrix m(i,j) = 1 if i =j; m(i,j) = 1 if (i+j) is odd; m(i,j) = 0 if i+j is even, then a(n) = -det M_(n+1) - Benoit Cloitre, Jun 19 2002

a(n) is the number of squares with corners on an n X n grid, distinct up to translation. See also A002415, A108279.

Starting (1, 3, 5, 8, 11, ...), = row sums of triangle A135841. - Gary W. Adamson, Dec 01 2007

Number of solutions to x+y >= n-1 in integers x,y with 1 <= x <= y <= n-1. - Franz Vrabec, Feb 22 2008

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-4)=-coeff(charpoly(A,x),x^2). - Milan Janjic, Jan 26 2010

Equals row sums of a triangle with alternate columns of (1,2,3,...) and (1,1,1,...). - Gary W. Adamson, May 21 2010

Conjecture: if a(n) = p#(primorial)-1 for some prime number p, then q=(n+1) is also a prime number where p#=floor(q^2/4). Tested up to n=10^100000 no counterexamples are found. It seems that the subsequence is very scattered. So far the triples (p,q,a(q-1)) are {(2,3,1), (3,5,5), (5,11,29), (7,29,209), (17,1429,510509)}. - David Morales Marciel, Oct 02 2015

Numbers of an Ulam spiral starting at 0 in which the shape of the spiral is exactly a rectangle. E.g., a(4)=5 the Ulam spiral is including at that moment only the elements 0,1,2,3,4,5 and the shape is a rectangle. The area is always a(n)+1. E.g., for a(4) the area of the rectangle is 2(rows) X 3(columns) = 6 = a(4) + 1. - David Morales Marciel, Apr 05 2016

Numbers of different quadratic forms (quadrics) in the real projective space P^n(R). - Serkan Sonel, Aug 26 2020

a(n+1) is the number of one-dimensional subspaces of (F_3)^n, counted up to coordinate permutation. E.g.: For n=4, there are five one-dimensional subspaces in (F_3)^3 up to coordinate permutation: [1 2 2] [0 2 2] [1 0 2] [0 0 2] [1 1 1]. This example suggests a bijection (which has to be adjusted for the all-ones matrix) with the binary matrices of the first comment. - Álvar Ibeas, Sep 21 2021

REFERENCES

O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig, 1982. See p. 59.

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000

T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018). See p. 15.

W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.

Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

G.f.: x^2*(1+x-x^2)/((1-x^2)*(1-x)^2) = x^2*(1+x-x^2) / ( (1+x)*(1-x)^3 ).

a(n+1) = A002623(n) - A002623(n-1) - 1.

a(n) = A002620(n+1) - 1 = A014616(n-2) + 1.

a(n+1) = A002620(n) + n, n >= 0. - Philippe Deléham, Feb 27 2004

a(0)=0, a(n) = floor(a(n-1) + sqrt(a(n-1)) + 1) for n > 0. - Gerald McGarvey, Jul 30 2004

a(n) = floor((n+1)^2/4) - 1. - Franz Vrabec, Feb 22 2008

a(n) = A005744(n-1) - A005744(n-2). - R. J. Mathar, Nov 04 2008

a(n) = a(n-1) + [side length of the least square > a(n-1) ], that is a(n) = a(n-1) + ceiling(sqrt(a(n-1) + 1)). - Ctibor O. Zizka, Oct 06 2009

For a(1)=0, a(2)=1, a(n) = 2*a(n-1) - a(n-2) + 1 if n is odd; a(n) = 2*a(n-1) - a(n-2) if n is even. - Vincenzo Librandi, Dec 23 2010

a(n) = A181971(n, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4); a(1)=0, a(2)=1, a(3)=3, a(4)=5. - Harvey P. Dale, Jun 14 2013

a(n) = floor( (n-1)*(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013

a(n) = (2*n^2 + 4*n - 7 - (-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014

a(n) = a(-n-2) = n-1 + floor( (n-1)^2/4 ). - Bruno Berselli, Feb 03 2015

a(n) = (1/4)*(n+3)^2 - (1/8)*(1 + (-1)^n) - 1. - Serkan Sonel, Aug 26 2020

a(n) + a(n+1) = A034856(n). - R. J. Mathar, Mar 13 2021

a(2*n) = n^2 + n - 1, a(2*n+1) = n^2 + 2*n. - Greg Dresden and Zijie He, Jun 28 2022

EXAMPLE

There are five 2 X 3 binary matrices with no zero rows or columns up to row and column permutation:

[1 0 0] [1 0 0] [1 1 0] [1 1 0] [1 1 1]

[0 1 1] [1 1 1] [0 1 1] [1 1 1] [1 1 1].

MAPLE

A024206:=n->(2*n^2+4*n-7-(-1)^n)/8: seq(A024206(n), n=1..100);

MATHEMATICA

f[x_, y_] := Floor[ Abs[ y/x - x/y]]; Table[ Floor[ f[2, n^2 + 2 n - 2] /2], {n, 57}] (* Robert G. Wilson v, Aug 11 2010 *)

LinearRecurrence[{2, 0, -2, 1}, {0, 1, 3, 5}, 60] (* Harvey P. Dale, Jun 14 2013 *)

Rest[CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x^2) (1 - x)^2), {x, 0, 70}], x]] (* Vincenzo Librandi, Oct 02 2015 *)

PROG

(PARI) a(n)=(n-1)*(n+3)\4 \\ Charles R Greathouse IV, Jun 26 2013

(PARI) x='x+O('x^99); concat(0, Vec(x^2*(1+x-x^2)/ ((1-x^2)*(1-x)^2))) \\ Altug Alkan, Apr 05 2016

(Haskell)

a024206 n = (n - 1) * (n + 3) `div` 4

a024206_list = scanl (+) 0 $ tail a008619_list

-- Reinhard Zumkeller, Dec 18 2013

(Magma) [(2*n^2+4*n-7-(-1)^n)/8 : n in [1..100]]; // Wesley Ivan Hurt, Jul 22 2014

(GAP) a:=[0, 1, 3, 5];; for n in [5..65] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Oct 23 2018

CROSSREFS

Cf. A014616, A135841, A034856, A005744 (partial sums), A008619 (1st differences).

A row or column of the array A196416 (possibly with 1 subtracted from it).

Cf. A008619.

Second column of A232206.

Sequence in context: A024169 A213706 A078126 * A159325 A228848 A049706

Adjacent sequences: A024203 A024204 A024205 * A024207 A024208 A024209

KEYWORD

nonn,easy,nice

AUTHOR

Clark Kimberling

EXTENSIONS

Corrected and extended by Vladeta Jovovic, Jun 02 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 18:21 EST 2022. Contains 358703 sequences. (Running on oeis4.)