This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024167 a(n) = n!*(1 - 1/2 + 1/3 - ... + c/n), where c = (-1)^(n+1). 17
 1, 1, 5, 14, 94, 444, 3828, 25584, 270576, 2342880, 29400480, 312888960, 4546558080, 57424792320, 948550176000, 13869128448000, 256697973504000, 4264876094976000, 87435019510272000, 1627055289796608000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Stirling transform of (-1)^n*a(n-1) = [0, 1, -1, 5, -14, 94, ...] is A000629(n-2) = [0, 1, 2, 6, 26, ...]. - Michael Somos, Mar 04 2004 Stirling transform of a(n) = [1, 1, 5, 14, 94, ...] is A052882(n) =[1, 2, 9, 52, 375, ...]. - Michael Somos, Mar 04 2004 a(n) is the number of n-permutations that have a cycle with length greater than n/2. - Geoffrey Critzer, May 28 2009 From Jens Voß, May 07 2010: (Start) A024167(4n) is divisible by 6n+1 for all n >= 1; the quotient of A024167(4n) and 6n+1 is A177188(n). A024167(4n+3) is divisible by 6n+5 for all n >= 0; the quotient of A024167(4n+3) and 6n+5 is A177174(n). (End) LINKS FORMULA E.g.f.: log(1+x)/(1-x). - Vladeta Jovovic, Aug 25 2002 a(n) = a(n-1) + a(n-2) * (n-1)^2, n>1. - Michael Somos, Oct 29, 2002 b(n) = n! satisfies the above recurrence with b(1) = 1, b(2) = 2. This gives the finite continued fraction expansion a(n)/n! = 1/(1+1^2/(1+2^2/(1+3^2/(1+...+(n-1)^2/1)))). Cf. A142979. - Peter Bala, Jul 17 2008 a(n) = A081358(n) - A092691(n). - Gary Detlefs, Jul 09 2010 E.g.f.: x/(x-1)/G(0) where G(k)= -1 + (x-1)*k + x*(k+1)^2/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 18 2012 a(n) ~ log(2)*n!. - Daniel Suteu, Dec 03 2016 a(n) = 1/2*n!*((-1)^n*(digamma((n+1)/2) - digamma((n+2)/2)) + log(4)). - Daniel Suteu, Dec 03 2016 EXAMPLE G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ... MATHEMATICA f[k_] := k (-1)^(k + 1) t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 18}]    (* A024167 signed *) (* Clark Kimberling, Dec 30 2011 *) a[ n_] := If[ n < 0, 0, n! Sum[ -(-1)^k / k, {k, n}]]; (* Michael Somos, Nov 28 2013 *) a[ n_] := If[ n < 0, 0, n! (PolyGamma[n + 1] - PolyGamma[(n + Mod[n, 2, 1]) / 2])]; (* Michael Somos, Nov 28 2013 *) a[ n_] := If[ n < 1, 0, (-1)^Quotient[n, 2] SymmetricPolynomial[ n - 1, Table[ -(-1)^k k, {k, n}]]]; (* Michael Somos, Nov 28 2013 *) PROG (PARI) {a(n) = if( n<0, 0, n! * polcoeff( log(1 + x + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Mar 02 2004 */ CROSSREFS Cf. A000254. Cf. A142979. Cf. A177174, A177188. - Jens Voß, May 07 2010 Sequence in context: A224245 A238380 A183307 * A077262 A184439 A267351 Adjacent sequences:  A024164 A024165 A024166 * A024168 A024169 A024170 KEYWORD nonn,easy,changed AUTHOR EXTENSIONS More terms from Benoit Cloitre, Jan 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.