login
A023974
First bit in fractional part of binary expansion of 7th root of n.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
a(n) = 1 if (k-1/2)^7 < n < k^7 for some k, otherwise a(n) = 0. - Robert Israel, Mar 04 2024
LINKS
MAPLE
f:= proc(n) local x;
x:= frac(n^(1/7));
if is(x < 1/2) then 0 else 1 fi
end proc:
map(f, [$1..200]); # Robert Israel, Mar 04 2024
MATHEMATICA
Array[ Function[ n, RealDigits[ N[ Power[ n, 1/7 ], 10 ], 2 ]// (#[ [ 1, #[ [ 2 ] ]+1 ] ])& ], 110 ]
CROSSREFS
Sequence in context: A353473 A011731 A085980 * A277164 A011730 A358261
KEYWORD
nonn,base
STATUS
approved