login
A023971
First bit in fractional part of binary expansion of 4th root of n.
1
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
a(n) = 0 if k^4 <= n <= k^4 + 2*k^3 + (3*k^2+k)/2,
= 1 if k^4 + 2*k^3 + (3*k^2+k)/2 < n < (k+1)^4. - Robert Israel, Aug 18 2014
LINKS
MAPLE
[seq(floor(2*n^(1/4)) mod 2, n=1..1000)]; # Robert Israel, Aug 18 2014
MATHEMATICA
Array[ Function[ n, RealDigits[ N[ Power[ n, 1/4 ], 10 ], 2 ]// (#[ [ 1, #[ [ 2 ] ]+1 ] ])& ], 110 ]
Table[NumberDigit[Surd[n, 4], -1, 2], {n, 120}] (* Harvey P. Dale, Jul 28 2023 *)
CROSSREFS
Sequence in context: A011670 A011666 A011669 * A185014 A369036 A354948
KEYWORD
nonn,base
STATUS
approved