login
Theta series of laminated lattice LAMBDA_20.
5

%I #27 May 27 2023 08:06:41

%S 1,0,17400,645120,8699640,64266240,334145760,1327902720,4450873080,

%T 12747325440,33162177744,77585418240,171110020320,348920586240,

%U 685157000640,1264980234240,2278793539320,3901915054080

%N Theta series of laminated lattice LAMBDA_20.

%C Lattice of rank 20 and degree 24

%C Basis:

%C ( +0 +0 +2 -2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +2 -2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +2 +0 +0 +0 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +1 +1 +1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +2 +0 +0 +0 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +1 +1 +1 +1 +1 +1 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +1 +1 +0 +0 +1 -1 +0 +0 +1 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0)

%C ( +1 +0 +1 +0 +1 +0 +0 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +1 -1 +0 +0 +0 +0)

%C ( +1 +1 +0 +0 +1 +0 +1 +0 +0 +1 -1 +0 +0 +0 +0 +0 +0 +1 -1 +0 +0 +0 +0 +0)

%C ( +1 +1 +0 +0 +1 +0 +1 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0)

%C ( +1 +0 +1 +0 +1 +0 +0 +1 +1 +1 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +0)

%C Inner Product Denominator: 2

%C Level is 4, dimension of space of modular forms is 6. - _John Cannon_

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 174.

%H John Cannon, <a href="/A023942/b023942.txt">Table of n, a(n) for n = 0..999</a>

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/LAMBDA20.html">Home page for this lattice</a>

%e G.f. = 1 + 17400*q^4 + 645120*q^6 + 8699640*q^8 + 64266240*q^10 + 334145760*q^12 + O(q^14).

%o (Magma) L:=Lattice("Lambda",20); T<q> := ThetaSeries(L,14); T;

%o (Magma) A := Basis(ModularForms(Gamma0(4), 10), 20); A[1] + 17400*A[3] + 645120*A[4] + 8699640*A[5] + 64266240*A[6]; /* _Michael Somos_, May 26 2023 */

%o (Sage)

%o M = ModularForms(Gamma0(4), 10);

%o bases = [_.q_expansion(20) for _ in M.integral_basis()];

%o f = sum(x*y for (x, y) in zip(bases, [1, 0, 17400, 645120, 8699640, 64266240])); list(f) # _Andy Huchala_, Jun 05 2021

%Y Cf. A023941.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E Extended to 1000 terms by _John Cannon_, Jan 23 2007