login
Number of partitions of n into composite parts.
14

%I #31 Nov 03 2023 11:08:17

%S 1,0,0,0,1,0,1,0,2,1,2,0,4,1,4,2,7,2,9,3,12,6,15,6,23,11,26,15,37,19,

%T 48,26,61,39,78,47,105,65,126,88,167,111,211,146,264,196,331,241,426,

%U 318,519,408,657,511,820,651,1010,833,1252,1028,1564,1301,1900

%N Number of partitions of n into composite parts.

%C First differences of A002095. - _Emeric Deutsch_, Apr 03 2006

%C a(n+1) > a(n) for n > 108. - _Reinhard Zumkeller_, Aug 22 2007

%H Alois P. Heinz, <a href="/A023895/b023895.txt">Table of n, a(n) for n = 0..5000</a> (terms n = 0..150 from Reinhard Zumkeller)

%F G.f.: (1-x)*Product_{j>=1} (1-x^prime(j))/(1-x^j). - _Emeric Deutsch_, Apr 03 2006

%e a(12) = 4 because 12 = 4 + 4 + 4 = 6 + 6 = 4 + 8 = 12 (itself a composite number).

%p g:=(1-x)*product((1-x^ithprime(j))/(1-x^j),j=1..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..62); # _Emeric Deutsch_, Apr 03 2006

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,

%p b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..70); # _Alois P. Heinz_, May 29 2013

%t Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; CoefficientList[ Series[1/Product[1 - x^Composite[i], {i, 1, 50}], {x, 0, 75}], x]

%t (* Second program: *)

%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)

%o (Haskell)

%o a023895 = p a002808_list where

%o p _ 0 = 1

%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

%o -- _Reinhard Zumkeller_, Jan 15 2012

%Y Cf. A002808.

%Y Cf. A002095.

%Y Cf. A132456.

%Y Cf. A204389.

%K nonn

%O 0,9

%A _Olivier Gérard_

%E More terms from _Reinhard Zumkeller_, Aug 22 2007