%I #8 Sep 15 2022 06:28:16
%S 4,2,2,5,5,5,2,2,2,5,2,2,2,5,2,2,2,5,5,5,5,2,2,2,5,5,5,5,2,2,2,5,5,5,
%T 5,2,2,2,5,2,2,2,5,2,2,2,5,2,2,2,5,5,5,5,2,2,2,5,2,2,2,5,2,2,2,5,2,2,
%U 2,5,5,5,5,2,2,2,5,2,2,2,5,2,2,2,5,2,2,2,5,5,5,5,2,2,2,5,5,5,5
%N s(3n)-s(3n-1), where s( ) is sequence A023633.
%C From _Michel Dekking_, Sep 15 2022: (Start)
%C Let (c(n): n>=0) = 0,3,4,5,9,13,17,... be the complement of A023633, and let (b(n)) be the sequence of first differences of (c(n)). Then one sees directly from the definition of A023633 that a(n) = b(n) + 1 for all n.
%C Conjecture: (a(n)) is fixed point of the morphism
%C 2->5, 4->422, 5->5222,
%C and so (b(n)) is fixed point of the morphism 1->4, 3->311, 4->4111. (End)
%K nonn
%O 1,1
%A _Clark Kimberling_