login
A023634
s(3n)-s(3n-1), where s( ) is sequence A023633.
0
4, 2, 2, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 2, 5, 5, 5, 5, 2, 2, 2, 5, 5, 5, 5
OFFSET
1,1
COMMENTS
From Michel Dekking, Sep 15 2022: (Start)
Let (c(n): n>=0) = 0,3,4,5,9,13,17,... be the complement of A023633, and let (b(n)) be the sequence of first differences of (c(n)). Then one sees directly from the definition of A023633 that a(n) = b(n) + 1 for all n.
Conjecture: (a(n)) is fixed point of the morphism
2->5, 4->422, 5->5222,
and so (b(n)) is fixed point of the morphism 1->4, 3->311, 4->4111. (End)
CROSSREFS
Sequence in context: A016510 A334232 A244681 * A199609 A284692 A019834
KEYWORD
nonn
STATUS
approved