login
Self-convolution of (1, p(1), p(2), ...).
6

%I #16 Oct 19 2018 15:49:13

%S 1,4,10,22,43,80,137,222,343,508,737,1030,1411,1888,2477,3198,4059,

%T 5096,6297,7702,9327,11176,13301,15682,18355,21344,24673,28358,32411,

%U 36896,41769,47082,52883,59148,65937,73298,81251,89776,98957

%N Self-convolution of (1, p(1), p(2), ...).

%C p(1),p(2),p(3)... are the prime numbers (A000040). The analogous sequence for the partition numbers is A048574.

%H Reinhard Zumkeller, <a href="/A023626/b023626.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f: x*(1+b(x))^2 = (c(x)^2)/x, where b(x) and c(x) are respectively the g.f. of A000040 and A008578. - _Mario C. Enriquez_, Dec 10 2016

%e G.f. = x + 4*x^2 + 10*x^3 + 22*x^4 + 43*x^5 + 80*x^6 + 137*x^7 + ...

%t z = 100; p = Join[{1}, Prime[Range[z]]];

%t a[n_] := Sum[p[[i]] p[[n - i + 1]], {i, 1, n}];

%t Table[a[n], {n, 1, z}] (* _Clark Kimberling_, Dec 01 2016 *)

%t a[ n_] := If[ n < 1, 0, SeriesCoefficient[ (1 + O[x]^n + Sum[ Prime[k] x^k, {k, n - 1}])^2, {x, 0, n - 1}]]; (* _Michael Somos_, Dec 01 2016 *)

%t Table[With[{c=Join[{1},Prime[Range[n]]]},ListConvolve[c,c]],{n,0,40}]// Flatten (* _Harvey P. Dale_, Oct 19 2018 *)

%o (Haskell)

%o a023626 n = a023626_list !! (n-2)

%o a023626_list = f a000040_list [1] where

%o f (p:ps) rs = (sum $ zipWith (*) rs a008578_list) : f ps (p : rs)

%o -- _Reinhard Zumkeller_, Nov 09 2015

%Y Cf. A000040, A008578, A014342, A048574.

%K nonn

%O 1,2

%A _Clark Kimberling_