This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023436 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6). 3

%I

%S 0,1,1,2,3,5,8,12,19,29,45,69,106,163,250,384,589,904,1387,2128,3265,

%T 5009,7685,11790,18088,27750,42573,65314,100202,153726,235840,361816,

%U 555083,851585,1306466,2004325,3074951

%N Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6).

%C Diagonal sums of the Riordan array (1/(1-x),x(1+x+x^2+x^3)) yield a(n+1). - _Paul Barry_, May 10 2005

%H Robert Israel, <a href="/A023436/b023436.txt">Table of n, a(n) for n = 0..4837</a>

%H J. H. E. Cohn, <a href="http://www.fq.math.ca/Scanned/2-2/cohn1.pdf">Letter to the editor</a>, Fib. Quart. 2 (1964), 108.

%H V. E. Hoggatt, Jr. and D. A. Lind, <a href="http://www.fq.math.ca/Scanned/7-5/hoggatt.pdf">The dying rabbit problem</a>, Fib. Quart. 7 (1969), 482-487.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,0,-1).

%F G.f.: x/(1 - x - x^2 + x^6) = x/((1 - x)(1 - x^2 - x^3 - x^4 - x^5)). - _Paul Barry_, May 10 2005

%p f:= gfun:-rectoproc({a(n)=a(n-1) + a(n-2) - a(n-6), seq(a(i)=0,i=-4..0),a(1)=1},a(n),'remember'):

%p seq(f(n),n=0..50); # _Robert Israel_, Dec 29 2014

%t a=b=c=d=e=0;f=1;lst={e,f};Do[g=e+f-a;AppendTo[lst,g];a=b;b=c;c=d;d=e;e=f;f=g,{n,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 30 2009 *)

%t LinearRecurrence[{1,1,0,0,0,-1},{0,1,1,2,3,5},40] (* _Harvey P. Dale_, Dec 21 2014 *)

%K nonn

%O 0,4

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)