login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023436 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-6). 3
0, 1, 1, 2, 3, 5, 8, 12, 19, 29, 45, 69, 106, 163, 250, 384, 589, 904, 1387, 2128, 3265, 5009, 7685, 11790, 18088, 27750, 42573, 65314, 100202, 153726, 235840, 361816, 555083, 851585, 1306466, 2004325, 3074951 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Diagonal sums of the Riordan array (1/(1-x),x(1+x+x^2+x^3)) yield a(n+1). - Paul Barry, May 10 2005

LINKS

Robert Israel, Table of n, a(n) for n = 0..4837

J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.

V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-1).

FORMULA

G.f.: x/(1 - x - x^2 + x^6) = x/((1 - x)(1 - x^2 - x^3 - x^4 - x^5)). - Paul Barry, May 10 2005

MAPLE

f:= gfun:-rectoproc({a(n)=a(n-1) + a(n-2) - a(n-6), seq(a(i)=0, i=-4..0), a(1)=1}, a(n), 'remember'):

seq(f(n), n=0..50); # Robert Israel, Dec 29 2014

MATHEMATICA

a=b=c=d=e=0; f=1; lst={e, f}; Do[g=e+f-a; AppendTo[lst, g]; a=b; b=c; c=d; d=e; e=f; f=g, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *)

LinearRecurrence[{1, 1, 0, 0, 0, -1}, {0, 1, 1, 2, 3, 5}, 40] (* Harvey P. Dale, Dec 21 2014 *)

CROSSREFS

Sequence in context: A274199 A099823 A240523 * A024567 A303668 A060961

Adjacent sequences:  A023433 A023434 A023435 * A023437 A023438 A023439

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 19:09 EST 2019. Contains 329323 sequences. (Running on oeis4.)