login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023435 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-5). 6
0, 1, 1, 2, 3, 5, 7, 11, 16, 24, 35, 52, 76, 112, 164, 241, 353, 518, 759, 1113, 1631, 2391, 3504, 5136, 7527, 11032, 16168, 23696, 34728, 50897, 74593, 109322, 160219, 234813, 344135, 504355, 739168, 1083304, 1587659, 2326828, 3410132, 4997792, 7324620, 10734753 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Diagonal sums of Riordan array (1/(1-x), x(1+x+x^2)) yield a(n+1). - Paul Barry, Feb 16 2005

The Ca2 sums, see A180662 for the definition of these sums, of the "Races with Ties" triangle A035317 lead to this sequence. - Johannes W. Meijer, Jul 20 2011

Number of ordered partitions of (n-1) into parts less than or equal to 3, where the order of the 2's is unimportant. (see example). - David Neil McGrath, Apr 26 2015

Number of ordered partitions of (n-1) into parts less than or equal to 4, where the order of the 1's is unimportant.(see example). - David Neil McGrath, May 05 2015

List the partitions of n in nonincreasing order. Freeze the 1's and 2's in place and allow the other summands to vary their order without disturbing the 1's and 2's. The result is a(n+1). - Gregory L. Simay (based on correspondence with George E. Andrews), Jul 11 2016

Number of ordered partitions of n-1 where the order of the 1's and the 2's are unimportant. - Gregory L. Simay, Jul 18 2016

LINKS

Table of n, a(n) for n=0..43.

J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.

V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.

Z. Kasa, On scattered subword complexity, arXiv:1104.4425 [cs.DM], 2011.

Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1)

FORMULA

G.f.: x / ( (x-1)*(1+x)*(x^3+x-1) ). - R. J. Mathar, Nov 28 2011

EXAMPLE

There are 11 partitions of 6 into parts less than or equal to 3, where the order of 2's is unimportant, a(7)=11. These are (33),(321=231=312),(132=123=213),(3111),(1311),(1131),(1113),(222),(2211=1122=1221=2112=2121=1212),(21111=12111=11211=11121=11112),(111111). - David Neil McGrath, Apr 26 2015

There are 11 partitions of 6 into parts less than equal to 4, where the order of 1's is unimportant. These are (42),(24),(411=141=114),(33),(321=312=132),(231=213=123),(3111=1311=1131=1113),(222),(2211=1122=2112=1221=1212=2121),(21111=12111=11211=11121=11112),(111111). - David Neil McGrath, May 05 2015

There are a(9)=24 partitions of 8 where the 1's and 2's are frozen []: (8), (7[1]), (6[2]), (53), (35) (44), (6[1][1]), (5,[2][1]), (43[1]), (34[1]), (4[2][2]), (33[2][2]) (5[1][1][1]), (4[2][1][1]), (33[1][1]), (3[2][2][1]), ([2][2][2][2]), (4[1][1][1][1]), (3[2][1][1][1]), ([2][2][2][1][1]), (3[1][1][1][1][1]), ([2][2][1][1][1][1]), ([2][1][1][1][1][1][1]),([1][1][1][1][1][1][1][1]). - Gregory L. Simay, Jul 11 2016

MATHEMATICA

a=b=c=d=0; e=1; lst={d, e}; Do[f=d+e-a; AppendTo[lst, f]; a=b; b=c; c=d; d=e; e=f, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 30 2009 *)

LinearRecurrence[{1, 1, 0, 0, -1}, {0, 1, 1, 2, 3}, 50] (* Vincenzo Librandi, Apr 27 2015 *)

PROG

(MAGMA) I:=[0, 1, 1, 2, 3]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-Self(n-5): n in [1..45]]; // Vincenzo Librandi, Apr 27 2015

(PARI) x='x+O('x^99); concat(0, Vec(x/((x-1)*(1+x)*(x^3+x-1)))) \\ Altug Alkan, Apr 09 2018

CROSSREFS

First differences are in A013979.

Cf. A077864 (bisection).

Sequence in context: A226541 A281578 A173199 * A274184 A091501 A286271

Adjacent sequences:  A023432 A023433 A023434 * A023436 A023437 A023438

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vincenzo Librandi, Apr 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 12:45 EST 2019. Contains 329094 sequences. (Running on oeis4.)