login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023422 Generalized Catalan Numbers. 5
1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 129, 261, 530, 1080, 2208, 4528, 9313, 19207, 39714, 82314, 170996, 355976, 742545, 1551817, 3248823, 6812947, 14309557, 30099645, 63402315 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..2926

A. Goupil, M.-E. Pellerin and J. de Wouters d'oplinter, Snake Polyominoes, arXiv preprint arXiv:1307.8432, 2013. (Gives a g.f.)

FORMULA

G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^2 + x^3 + x^4 + x^5). - Ilya Gutkovskiy, Jul 20 2021

MATHEMATICA

a[0]=1; a[n_]:= a[n]=a[n-1] + Sum[a[k]*a[n-2-k], {k, 4, n-2}]; Table[a[n], {n, 0, 30}] (* modified by G. C. Greubel, Jan 01 2018 *)

B[q_] = (q^2 + q^3 + q^4 + q^5 - Sqrt[((q(q^5 - 1))/(q - 1) - 1)^2 - 4q^6] - q + 1)/(2q^2); CoefficientList[B[q] + O[q]^31, q] (* Jean-François Alcover, Jan 29 2019 *)

PROG

(PARI) {a(n) = if(n==0, 1, a(n-1) + sum(k=4, n-2, a(k)*a(n-k-2)))};

for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jan 01 2018

CROSSREFS

Cf. A000108, A001006, A004148, A004149, A023421, A023423.

Fifth row of A064645.

Sequence in context: A278995 A117302 A265407 * A084638 A157021 A210543

Adjacent sequences: A023419 A023420 A023421 * A023423 A023424 A023425

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 10:26 EST 2022. Contains 358656 sequences. (Running on oeis4.)