The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023358 Number of compositions into sums of cubes. 12
 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 120, 150, 187, 232, 286, 351, 430, 527, 649, 802, 993, 1230, 1522, 1880, 2318, 2854, 3514, 4330, 5341, 6594, 8145, 10061, 12423, 15330, 18908, 23316, 28753, 35467, 43762, 54010, 66665, 82281, 101540, 125286, 154566, 190682 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe) FORMULA G.f.: 1 / (1 - Sum_{n>=1} x^(n^3) ). - Joerg Arndt, Mar 30 2014 a(n) ~ c * d^n, where d = 1.2338881403372741887535479..., c = 0.418031200641837887398653... - Vaclav Kotesovec, May 01 2014 MAPLE a:= proc(n) option remember; `if`(n=0, 1,       `if`(n<0, 0, add(a(n-i^3), i=1..iroot(n, 3))))     end: seq(a(n), n=0..80);  # Alois P. Heinz, Sep 08 2014 MATHEMATICA a[n_] := a[n] = If[n==0, 1, If[n<0, 0, Sum[a[n-i^3], {i, 1, Floor[n^(1/3)]}]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *) PROG (PARI) E=6; N=E^3-1; q='q+O('q^N); gf=1/(1 - sum(n=1, E, q^(n^3) ) );  \\ test, several similar seqs. v=Vec(gf) \\ Joerg Arndt, Mar 30 2014 CROSSREFS Sequence in context: A017902 A005710 A291146 * A322855 A322803 A322800 Adjacent sequences:  A023355 A023356 A023357 * A023359 A023360 A023361 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)