

A023133


Signature sequence of Pi (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).


4



1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4, 1, 8, 5, 2, 9, 6, 3, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3, 16, 13, 10, 7, 4, 1, 17, 14, 11, 8, 5, 2, 18, 15, 12, 9, 6, 3, 19, 16, 13, 10, 7, 4, 1, 20, 17, 14, 11, 8, 5, 2, 21, 18, 15, 12, 9, 6, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000
C. Kimberling, Interspersions


PROG

(PARI) lista(nn) = {v = vector(nn^2, k, kij = k+nn1; i = 1+(kij % nn); j = kij\nn; i+j*Pi); vs = vecsort(v, , 1); for (k=1, #vs, print1(curi = 1+((vs[k]+nn1) % nn), ", "); if (curi == nn, break)); } \\ Michel Marcus, Apr 10 2015


CROSSREFS

Cf. A001840, A008810.
Sequence in context: A238326 A083480 A179547 * A026280 A115994 A276951
Adjacent sequences: A023130 A023131 A023132 * A023134 A023135 A023136


KEYWORD

nonn


AUTHOR

Clark Kimberling


STATUS

approved



