This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023106 a(n) is a power of the sum of its digits. 5
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 512, 2401, 4913, 5832, 17576, 19683, 234256, 390625, 614656, 1679616, 17210368, 34012224, 52521875, 60466176, 205962976, 612220032, 8303765625, 10460353203, 24794911296, 27512614111, 52523350144, 68719476736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Base-10 Reacher numbers:  named for the character Jack Reacher in the series of books by Lee Child.  Reacher likes the number 81 because it is the square of the sum of its base-10 digits. - Jeffrey Shallit, Apr 03 2015 Contains A061209 and A061210 and all terms of A061211. See A252648 for numbers which are the sum of some power of their digits. - M. F. Hasler, Apr 13 2015 REFERENCES Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36. LINKS David W. Wilson, Table of n, a(n) for n = 0..1137 Jeffrey Shallit, Mathematics in a Jack Reacher Novel, blog post, September 8 2007. EXAMPLE 2401 is an element because 2401 = 7^4 is a power of its digit sum 7. MATHEMATICA fQ[n_] := Block[{b = Plus @@ IntegerDigits[n]}, If[b > 1, IntegerQ[ Log[b, n]] ]]; Take[ Select[ Union[ Flatten[ Table[n^m, {n, 55}, {m, 9}]]], fQ[ # ] &], 31] (* Robert G. Wilson v, Jan 28 2005 *) PROG (PARI) is(n)={n<10||(!(n%s=sumdigits(n))&&s>1&&n==s^round(log(n)/log(s)))} \\ M. F. Hasler, Apr 13 2015 (Python) import math def is_valid(n): dsum = sum(map(int, str(n))); return dsum ** int(round(math.log(n, dsum))) == n if dsum > 1 else n < 2 # Victor Dumbrava, May 02 2018 CROSSREFS Cf. A061209, A061210, A061211, A252648. Sequence in context: A193757 A246605 A038178 * A135480 A289979 A228326 Adjacent sequences:  A023103 A023104 A023105 * A023107 A023108 A023109 KEYWORD nonn,base,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 10:51 EDT 2019. Contains 328216 sequences. (Running on oeis4.)