%I #12 Mar 20 2017 23:13:07
%S 75,142,315,12,819,84,1035,15,198,2766,9555,56,315,8352,20893,45,950,
%T 22000,819,132,63204,24492,114075,91,2646,938,30015,240,182807,118592,
%U 333795,153,5670,187416,73815,380,623610,176820,5699,231,10406,489808
%N a(n) is the least k > 0 such that k and 3k are anagrams in base n (written in base 10).
%C 2*a(n) is divisible by n-1. - _Robert Israel_, Mar 20 2017
%p for n from 4 to 100 do
%p searching:= true:
%p if n::even then delta:= n-1 else delta:= (n-1)/2 fi;
%p for d from 1 while searching do
%p for x from n^(d-1)+delta-1 to floor(n^d/3) by delta while searching do
%p if sort(convert(x,base,n)) = sort(convert(3*x,base,n)) then
%p searching:= false; A[n]:= x;
%p fi
%p od od od:
%p seq(A[i],i=4..100); # _Robert Israel_, Mar 20 2017
%t Table[k = 1; While[! Equal @@ Map[Sort@ IntegerDigits[#, n] &, {k, 3 k}], k++]; k, {n, 4, 45}] (* _Michael De Vlieger_, Mar 20 2017 *)
%K nonn,base
%O 4,1
%A _David W. Wilson_