login
Number of partitions of n into parts of 22 kinds.
2

%I #32 Mar 27 2017 15:19:59

%S 1,22,275,2530,18975,122430,702328,3661900,17627775,79264900,

%T 335937954,1351507830,5191041625,19125838600,67862904725,232671319474,

%U 773027485065,2494957906100,7839428942950,24025993453000,71941861591215

%N Number of partitions of n into parts of 22 kinds.

%C a(n) is Euler transform of A010861. - _Alois P. Heinz_, Oct 17 2008

%H Seiichi Manyama, <a href="/A023020/b023020.txt">Table of n, a(n) for n = 0..1000</a>

%H M. V. Movshev, <a href="https://arxiv.org/abs/1602.04673">A formula for the partition function of the beta-gamma system on the cone pure spinors</a>, arXiv preprint arXiv:1602.04673 [hep-th], 2016. [Gives sequence that appears to agree with this one]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> [_Alois P. Heinz_, Oct 17 2008]

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F G.f.: Product_{m>=1} 1/(1-x^m)^22.

%F a(0) = 1, a(n) = (22/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017

%p with (numtheory): a:= proc(n) option remember; `if`(n=0, 1, add (add (d*22, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq (a(n), n=0..40); # _Alois P. Heinz_, Oct 17 2008

%t CoefficientList[Series[1/QPochhammer[x]^22, {x, 0, 30}], x] (* _Indranil Ghosh_, Mar 27 2017 *)

%o (PARI) Vec(1/eta(x)^22 + O(x^30)) \\ _Indranil Ghosh_, Mar 27 2017

%Y Cf. 22nd column of A144064. - _Alois P. Heinz_, Oct 17 2008

%K nonn

%O 0,2

%A _David W. Wilson_