This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022922 Number of integers m such that 5^n < 2^m < 5^(n+1). 0
 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Let A(x) be the counting function of terms a(n) = 3 for n <= x. Then lim A(x)/x = 3*log(2)/log(5) - 1 = 0.29202967... as x goes to infinity. - Vladimir Shevelev, Mar 21 2013 LINKS EXAMPLE Contribution from M. F. Hasler, Mar 21 2013: (Start) a(0)=2 because 5^0 = 1 < 2 = 2^1 < 2^2 = 4 < 5 = 5^1, a(1)=2 because 5^1 = 5 < 8 = 2^3 < 2^4 = 16 < 25 = 5^2, a(2)=2 because 5^2 = 25 < 32 = 2^5 < 2^6 = 64 < 125 = 5^3, a(3)=3 because 5^3 = 125 < 128 = 2^7 < 2^8 < 2^9 = 512 < 625 = 5^4. (end) CROSSREFS Sequence in context: A135592 A022912 A173883 * A195352 A103507 A219252 Adjacent sequences:  A022919 A022920 A022921 * A022923 A022924 A022925 KEYWORD nonn AUTHOR EXTENSIONS Definition clarified by M. F. Hasler, Mar 21 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .