This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022912 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of k's. 4
 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 2, 6, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 3, 4, 2, 2, 2, 5, 2, 3, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In case of duplicates, the k values are listed in increasing order.  Thus a(18)=2 and a(19)=3 corresponding to binomial(16,2)=binomial(10,3)=120. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA A319382(n) = binomial(A022911(n),a(n)). - Robert Israel, Sep 18 2018 MAPLE N:= 10000: # for binomial(n, k) values <= N Res:= NULL: for n from 2 while n*(n-1)/2 <= N do   for k from 2 to n/2 do     v:= binomial(n, k);     if v > N then break fi;     Res:= Res, [v, n, k] od od: Res:= sort([Res], proc(p, q) if p[1]<>q[1] then  p[1]q[2] then p[2]>q[2] fi end proc): map(t -> t[3], Res); # Robert Israel, Sep 18 2018 CROSSREFS Cf. A003015, A006987, A022911, A319382. Sequence in context: A325273 A279408 A135592 * A318955 A173883 A022922 Adjacent sequences:  A022909 A022910 A022911 * A022913 A022914 A022915 KEYWORD nonn AUTHOR EXTENSIONS Corrected by Robert Israel, Sep 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 02:15 EDT 2019. Contains 322380 sequences. (Running on oeis4.)