login
A022825
a(n) = a([ n/2 ]) + a([ n/3 ]) + . . . + a([ n/n ]) for n > 1, a(1) = 1.
15
1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 19, 20, 22, 25, 29, 30, 36, 37, 42, 45, 47, 48, 60, 62, 64, 68, 73, 74, 84, 85, 93, 96, 98, 101, 119, 120, 122, 125, 137, 138, 148, 149, 154, 162, 164, 165, 193, 195, 201, 204, 209, 210, 226, 229, 241, 244, 246, 247, 278, 279
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = x + (1/(1 - x)) * Sum_{k>=2} (1 - x^k) * A(x^k). - Ilya Gutkovskiy, Feb 21 2022
MAPLE
a:= proc(n) option remember; `if`(n<2, 1,
add(a(iquo(n, j)), j=2..n))
end:
seq(a(n), n=1..63); # Alois P. Heinz, Mar 31 2021
MATHEMATICA
Fold[Append[#1, Total[#1[[Quotient[#2, Range[2, #2]]]]]] &, {1}, Range[2, 60]] (* Ivan Neretin, Aug 24 2016 *)
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A022825(n):
if n <= 1:
return n
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A022825(k1)
j, k1 = j2, n//j2
return c+n+1-j # Chai Wah Wu, Mar 31 2021
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Offset corrected by Alois P. Heinz, Mar 31 2021
STATUS
approved