login
A022816
Number of terms in 6th derivative of a function composed with itself n times.
4
1, 11, 44, 121, 271, 532, 952, 1590, 2517, 3817, 5588, 7943, 11011, 14938, 19888, 26044, 33609, 42807, 53884, 67109, 82775, 101200, 122728, 147730, 176605, 209781, 247716, 290899, 339851, 395126, 457312, 527032, 604945, 691747
OFFSET
1,2
REFERENCES
W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
LINKS
W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
FORMULA
a(n) = n*(n+1)*(n^3+24*n^2+81*n-46)/120. G.f.: x*(1+5*x-7*x^2+2*x^3)/(x-1)^6. - R. J. Mathar, Sep 15 2009
MATHEMATICA
Table[n(n+1)(n^3+24n^2+81n-46)/120, {n, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 11, 44, 121, 271, 532}, 40] (* Harvey P. Dale, Dec 29 2017 *)
PROG
(Magma) [n*(n+1)*(n^3+24*n^2+81*n-46)/120: n in [1..40]]; // Vincenzo Librandi, Oct 10 2011
(PARI) a(n)=n*(n+1)*(n^3+24*n^2+81*n-46)/120 \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Aug 15 1999.
STATUS
approved