login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^31.
2

%I #14 Aug 17 2023 08:15:19

%S 1,31,558,7471,82119,780301,6615617,51115125,365372944,2443413428,

%T 15419852290,92459940444,529685434303,2912402216693,15427940560977,

%U 78993195741608,392010552915543,1890042591320457

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^31.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 31, g(n) = n. - _Seiichi Manyama_, Aug 17 2023

%H Seiichi Manyama, <a href="/A022755/b022755.txt">Table of n, a(n) for n = 0..1000</a>

%F a(0) = 1; a(n) = (31/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 17 2023

%Y Column k=31 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_