login
Expansion of 1/Product_{m>=1} (1 - m*q^m)^28.
2

%I #14 Aug 17 2023 08:15:07

%S 1,28,462,5712,58289,516292,4093670,29660488,199276056,1255092972,

%T 7472840004,42341686632,229538522801,1195827758664,6009154128786,

%U 29217982425632,137830326653131,632273980209340

%N Expansion of 1/Product_{m>=1} (1 - m*q^m)^28.

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 28, g(n) = n. - _Seiichi Manyama_, Aug 17 2023

%H Seiichi Manyama, <a href="/A022752/b022752.txt">Table of n, a(n) for n = 0..5000</a>

%F a(0) = 1; a(n) = (28/n) * Sum_{k=1..n} A078308(k) * a(n-k). - _Seiichi Manyama_, Aug 17 2023

%Y Column k=28 of A297328.

%Y Cf. A078308.

%K nonn

%O 0,2

%A _N. J. A. Sloane_